Up-regulation of ciliary neurotrophic factor in astrocytes by aspirin: implications for remyelination in multiple sclerosis.

نویسندگان

  • Khushbu K Modi
  • Michael Sendtner
  • Kalipada Pahan
چکیده

Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor, and the mechanisms by which CNTF expression could be increased in the brain are poorly understood. Acetylsalicylic acid (aspirin) is one of the most widely used analgesics. Interestingly, aspirin increased mRNA and protein expression of CNTF in primary mouse and human astrocytes in a dose- and time-dependent manner. Aspirin induced the activation of protein kinase A (PKA) but not protein kinase C (PKC). H-89, an inhibitor of PKA, abrogated aspirin-induced expression of CNTF. The activation of cAMP-response element-binding protein (CREB), but not NF-κB, by aspirin, the abrogation of aspirin-induced expression of CNTF by siRNA knockdown of CREB, the presence of a consensus cAMP-response element in the promoter of CNTF, and the recruitment of CREB and CREB-binding protein to the CNTF promoter by aspirin suggest that aspirin increases the expression of the Cntf gene via the activation of CREB. Furthermore, we demonstrate that aspirin-induced astroglial CNTF was also functionally active and that supernatants of aspirin-treated astrocytes of wild type, but not Cntf null, mice increased myelin-associated proteins in oligodendrocytes and protected oligodendrocytes from TNF-α insult. These results highlight a new and novel myelinogenic property of aspirin, which may be of benefit for multiple sclerosis and other demyelinating disorders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylthioadenosine promotes remyelination by inducing oligodendrocyte differentiation

Background: Methylthioadenosine is a metabolite of the polyamine pathway that modulates methyltransferase activity, thereby influencing DNA and protein methylation. Since methylthioadenosine produces neuroprotection in models of inflammation, ischemia and epilepsy, we set out to evaluate the role of methylthioadenosine in promoting remyelination, a process that will protect axons in demyelinati...

متن کامل

Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules.

In multiple sclerosis, myelin repair is generally insufficient despite the relative survival of oligodendrocytes within the plaques and the recruitment of oligodendrocyte precursors. Promoting remyelination appears to be a crucial therapeutic challenge. Using a newly developed enzymatic index of myelination, we screened different neurotrophic factors for their ability to enhance myelination. Ne...

متن کامل

CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo.

Delivery of factors capable of promoting oligodendrocyte precursor cell (OPC) survival and differentiation in vivo is an important therapeutic strategy for a variety of pathologies in which demyelination is a component, including multiple sclerosis and spinal cord injury. Ciliary neurotrophic factor (CNTF) is a neuropoietic cytokine that promotes both survival and maturation of a variety of neu...

متن کامل

Spatial and Temporal Profiles of Growth Factor Expression during CNS Demyelination Reveal the Dynamics of Repair Priming

Demyelination is the cause of disability in various neurological disorders. It is therefore crucial to understand the molecular regulation of oligodendrocytes, the myelin forming cells in the CNS. Growth factors are known to be essential for the development and maintenance of oligodendrocytes and are involved in the regulation of glial responses in various pathological conditions. We employed t...

متن کامل

Remyelination improvement after neurotrophic factors secreting cells transplantation in rat spinal cord injury

Objective(s): Neurotrophic factors secreting cells (NTS-SCs) may be a superior cell source for cell-based therapy in neurodegenerative diseases. NTS-SCs are able to secrete some neurotrophic Such as nerve growth factor and glia-derived neurotrophic factor. Our primary aim was to assess transplantation of neurotrophic factor secreting cells derived from human adipose-derived stem cells (hADSCs) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 25  شماره 

صفحات  -

تاریخ انتشار 2013